

XXXII Congresso Brasileiro de Custos

17, 18 e 19 de novembro de 2025 -Campo Grande / MS -

Predição de Custos Ocultos na Indústria Moveleira Integrando Métodos Determinísticos e Inteligência Artificial

José Ângelo Ferreira (UTFPR - LONDRINA) - joseaferreira@utfpr.edu.br Edson Luiz Valmorbida (UTFPR-LD) - edsonvalmorbida@utfpr.edu.br Lucas Akio Rodrigues (UTFPR) - lucasrodrigues.2025@alunos.utfpr.edu.br Mateus Diman Pegoraro (UTFPR) - mateuspegoraro@alunos.utfpr.edu.br

Resumo:

A indústria moveleira brasileira, formada majoritariamente por micro e pequenas empresas, enfrenta desafios relacionados à eficiência produtiva e à mensuração de perdas. Entre eles destacam-se os custos ocultos, que não são registrados pelos métodos contábeis tradicionais, mas impactam diretamente a competitividade. Este estudo tem como objetivo propor e aplicar um modelo de identificação e predição desses custos no setor de furação de uma indústria moveleira, integrando métodos determinísticos e técnicas de inteligência artificial. Primeiramente, os custos ocultos foram apurados de forma convencional, com base em dados operacionais. Em seguida, aplicou-se o algoritmo Random Forest no software Orange Data Mining para estimar os mesmos custos. O modelo apresentou indicadores de desempenho satisfatórios (RMSE = 16,10; MAE = 6,39; MAPE = 4,77%; R2 = 0,931), demonstrando boa precisão e elevada capacidade explicativa. A comparação entre os resultados convencionais e preditivos mostrou diferenças inferiores a 3%, reforçando a consistência da abordagem. Os achados indicam que o uso de machine learning pode complementar os métodos tradicionais de custeio, permitindo estimativas rápidas e confiáveis de custos ocultos. Conclui-se que a integração entre cálculos determinísticos e análise preditiva representa uma alternativa promissora para apoiar decisões de planejamento, precificação e melhoria contínua na indústria moveleira.

Palavras-chave: Custos Ocultos, Machine Learning, Inteligência Artificial, Indústria Moveleira.

Área temática: Tecnologia e gestão de custos

Predição de Custos Ocultos na Indústria Moveleira Integrando Métodos Determinísticos e Inteligência Artificial

RESUMO

A indústria moveleira brasileira, formada majoritariamente por micro e pequenas empresas, enfrenta desafios relacionados à eficiência produtiva e à mensuração de perdas. Entre eles destacam-se os custos ocultos, que não são registrados pelos métodos contábeis tradicionais, mas impactam diretamente a competitividade. Este estudo tem como objetivo propor e aplicar um modelo de identificação e predição desses custos no setor de furação de uma indústria moveleira, integrando métodos determinísticos e técnicas de inteligência artificial. Primeiramente, os custos ocultos foram apurados de forma convencional, com base em dados operacionais. Em seguida, aplicou-se o algoritmo Random Forest no software Orange Data Mining para estimar os mesmos custos. O modelo apresentou indicadores de desempenho satisfatórios (RMSE = 16,10; MAE = 6,39; MAPE = 4,77%; R² = 0,931), demonstrando boa precisão e elevada capacidade explicativa. A comparação entre os resultados convencionais e preditivos mostrou diferenças inferiores a 3%, reforçando a consistência da abordagem. Os achados indicam que o uso de machine learning pode complementar os métodos tradicionais de custeio, permitindo estimativas rápidas e confiáveis de custos ocultos. Conclui-se que a integração entre cálculos determinísticos e análise preditiva representa uma alternativa promissora para apoiar decisões de planejamento, precificação e melhoria contínua na indústria moveleira.

Palavras-chave: Custos Ocultos. Machine Learning. Inteligência Artificial. Indústria Moveleira.

Área Temática: Tecnologia e transformação digital na gestão de custos.

1 INTRODUÇÃO

A indústria moveleira brasileira possui grande relevância econômica e social, com destaque para polos como Arapongas (PR), Bento Gonçalves (RS) e Ubá (MG). Composta em sua maioria por micro e pequenas empresas, enfrenta desafios ligados à eficiência produtiva, controle de desperdícios e competitividade. Apesar de sua importância para a geração de empregos e a economia regional (IBGE, 2023), ainda carece de instrumentos eficazes para mensuração e redução de perdas operacionais. Nesse contexto, a análise de custos ocultos surge como estratégia essencial para a sustentabilidade financeira do setor (Fachinelli et al., 2020; Silva et al., 2022).

Esses custos, associados a paradas técnicas, setups, retrabalhos e ociosidade, correspondem ao que Savall e Zardet (1991) definem como perdas não capturadas pelos métodos tradicionais. A noção de "fábrica oculta" (Miller; Vollmann, 1985)

evidencia como atividades não planejadas — inspeções, ajustes e movimentações — consomem recursos sem agregar valor (Kaplan; Cooper, 1999).

Com o avanço da Indústria 4.0, técnicas de Inteligência Artificial (IA) têm se mostrado viáveis para identificar e prever tais perdas, por meio de modelos de machine learning aplicados ao diagnóstico de falhas e otimização de recursos (Zhao et al., 2021; Saxena et al., 2022).

Este artigo propõe um modelo de identificação e predição de custos ocultos no setor de furação de uma indústria moveleira, etapa marcada por atividades repetitivas e suscetíveis a perdas. A abordagem combina cálculos convencionais e algoritmos de IA evidenciando como a análise preditiva pode apoiar decisões de precificação, planejamento e melhoria contínua.

2 REFERENCIAL TEÓRICO

2.1 Conceito e relevância dos Custos Ocultos

Custos ocultos são perdas operacionais que não aparecem nos relatórios contábeis tradicionais, mas afetam diretamente a rentabilidade das empresas (Savall & Zardet, 1991). Estão associados a disfunções internas como retrabalho, paradas técnicas, ociosidade e falhas organizacionais. Miller e Vollmann (1985) destacam a existência da "fábrica oculta" — atividades improdutivas que consomem recursos sem gerar valor. Kaplan e Cooper (1999) apontam que os métodos de custeio tradicionais são incapazes de capturar esses custos, limitando a gestão estratégica.

2.1.1 Tipologia e classificação dos Custos Ocultos

Os custos ocultos podem ser classificados com base em sua origem e efeito sobre o processo produtivo. Freitas et al. (2007) propõem uma tipologia que inclui:

- Paradas (falhas técnicas ou organizacionais);
- Setup (tempo de preparação entre lotes);
- Ociosidade (recursos improdutivos);
- Retrabalho (correção de defeitos);
- Inspeção Excessiva (checagens repetidas);
- Não Qualidade (reclamações, desperdícios, devoluções).

Segundo Crosby (1979) e Juran & Godfrey (1999), o custo da não qualidade é relevante por combinar perdas visíveis e invisíveis. Femenick (2004) complementa

com a distinção entre custos invisíveis estruturais (como localização inadequada ou burocracia) e os ocultos ligados à má gestão.

2.1.2 Indicadores de diagnóstico de medição de custos ocultos

A mensuração dos custos ocultos estruturais é fundamental para sua visibilidade gerencial e controle estratégico. Savall e Zardet (1991) argumentam que, embora não registrados contabilmente, esses custos podem ser quantificados por meio de indicadores operacionais, convertendo perdas intangíveis em dados mensuráveis. Freitas et al. (2007) reforçam que o uso de modelos simples e adaptáveis à realidade fabril favorece a implantação prática desses controles.

Para tanto, foram adotadas fórmulas específicas por categoria de custo oculto, baseadas em tempos de perda e valores médios por hora de mão de obra ou máquina, conforme se apresenta a seguir.

a) Custo de Paradas Técnicas

As paradas técnicas correspondem a interrupções não planejadas no processo produtivo, como quebras de máquina ou espera por materiais. Representam perda direta de capacidade instalada.

$$Cpt = Tp(h) \times Chm(R\$/h) \tag{1}$$

Onde, Cpt é o custo de parada técnica (R\$); Tp é o tempo total de parada (horas); Chm é o custo por hora de máquina (R\$/h).

Segundo Savall e Zardet (1991), a parada técnica é um dos principais fatores ocultos de perda sistêmica.

b) Custo de Retrabalho

O retrabalho consiste na correção de produtos com defeito antes da entrega, consumindo novamente mão de obra e tempo produtivo. Além do impacto na produtividade, afeta a percepção de qualidade.

$$Crt = Trt(h) \times Chmo(R\$/h)$$
 (2)

Onde: *Crt* é o custo de retrabalho (R\$); Trt é o tempo total de retrabalho (horas); Chmo é o custo por hora de mão de obra (R\$/h).

Kaplan e Cooper (1999) destacam que o retrabalho, por não ser separado dos

custos de produção nos modelos tradicionais, dificulta a mensuração da ineficiência.

c) Custo de Setup

O setup refere-se ao tempo necessário para configurar máquinas entre lotes diferentes de produção. Shingo (1985) propôs sua redução como elemento central na melhoria contínua.

$$Cst = Tst \times (Chmo + Chm) \tag{3}$$

Onde: Cst é o custo estimado de setup (R\$); Tst é o tempo médio de setup por lote (horas); Chmo é o custo por hora de mão de obra (R\$/h); Chm é o custo por hora de máquina (R\$/h).

d) Custo de Ociosidade

Ociosidade ocorre quando a capacidade instalada é maior do que a produção realizada. Trata-se de um custo oculto clássico ligado à subutilização de recursos.

$$Coc = (Ci - Pr) \times Cht \tag{4}$$

Onde: Coc é o custo de ociosidade (R\$); Ci é a capacidade instalada (horas);Pr é a produção realizada (horas); Cht é o custo médio por hora (R\$/h).

Hosking (1993) argumenta que a ociosidade está entre os principais fatores silenciosos de desperdício estrutural.

e) Custo de Inspeção

Inspeções excessivas ocorrem quando há baixa confiabilidade no processo produtivo. Embora necessárias, consomem recursos sem agregar valor direto ao produto.

$$Cin = Tmi \times Chmo$$
 (5)

Onde: Cin é o custo de inspeção (R\$); Tmi é o tempo médio de inspeção por lote (horas); Chmo é o custo por hora de mão de obra (R\$/h).

Segundo Femenick (2004), esse tempo pode ser estimado em 0,2 h por lote em sistemas com baixa automação e controle manual de qualidade.

f) Custo da não Qualidade

O custo da não qualidade refere-se às perdas financeiras decorrentes de falhas no processo produtivo que resultam em retrabalho, devoluções, inspeções e gastos preventivos. Ao contrário dos custos visíveis nos demonstrativos contábeis, o CNQ está frequentemente disperso em diferentes áreas da organização, dificultando sua identificação direta (Femenick, 2004). No entanto, com base em variáveis operacionais, é possível mensurá-lo de forma objetiva para fins gerenciais e de controle.

A equação aplicada que permite calcular o CNQ é apresentada a seguir:

Onde: Temp Retrabalho é o tempo total gasto com correção de produtos com defeito (em horas); Cust Hora Mao-Obra é o custo por hora da mão de obra envolvida na produção (R\$/h); Quantidade Devolvida é o número de unidades devolvidas por falhas externas; Custo Unitario é o custo médio de produção por unidade (R\$); Tempo Inspeção é o tempo total dedicado à inspeção de qualidade (em horas); Cust Hor Inspecao é o custo por hora da equipe de inspeção (R\$/h); Custo Treinamento é o valor total investido em capacitação da equipe (R\$); Custo Padronização de processos (R\$).

Custos associados à prevenção, como investimentos em treinamento e padronização de processos, também integram o modelo ampliado do custo da não qualidade, conforme proposto por Crosby (1979). Embora não sejam diretamente classificados como perdas, esses valores representam ações estruturais destinadas à mitigação de falhas ocultas e devem ser considerados na análise estratégica do desempenho fabril.

Essa abordagem permite a construção de relatórios quantitativos periódicos com foco na redução de desperdícios e no aumento da eficácia operacional. O uso de dados operacionais favorece a integração com sistemas de custos baseados em atividades e ferramentas de análise preditiva (Kaplan; Cooper, 1999).

Essas fórmulas simplificadas possibilitam o mapeamento e simulação de perdas ocultas no processo industrial, servindo de base para diagnósticos preditivos

e decisões gerenciais. Quando integradas a sistemas digitais com coleta em tempo real, permitem o uso de Inteligência Artificial para análise contínua dos indicadores (Kumar; Singh, 2020; Zhao et al., 2021).

2.2 Inteligência artificial aplicada à gestão de custos ocultos

A Inteligência Artificial (IA) tem se destacado como uma aliada estratégica no controle de custos ocultos industriais. Com o uso de algoritmos capazes de aprender com dados históricos, a IA permite detectar disfunções operacionais invisíveis aos métodos tradicionais de custeio (Kumar & Singh, 2020).

O machine learning, ramo da IA, permite prever e estimar variáveis com base em dados operacionais. Dentre os algoritmos, destacam-se os supervisionados (como o Random Forest), úteis para prever valores como o custo oculto total. Técnicas de regressão são especialmente relevantes para mensurar impactos financeiros de falhas e perdas (Zhao et al., 2021; Saxena et al., 2022).

A IA tem sido aplicada com sucesso em:

- Manutenção preditiva: evitando paradas não programadas;
- Alocação inteligente de recursos: minimizando setups e ociosidade;
- Análise de desvios: detectando anomalias e otimizando decisões.

Essas aplicações fortalecem a gestão de custos estruturais relacionados à não qualidade e ineficiência.

2.2.1 Considerações estratégicas

Ao integrar IA aos sistemas de custeio e produção, as organizações ganham capacidade preditiva e diagnóstica em tempo real. Essa visibilidade melhora a precisão no planejamento, a eficácia na precificação e a agilidade na resposta a falhas, permitindo uma gestão mais robusta dos custos ocultos estruturais.

Além de sua relevância conceitual, a IA foi utilizada nesta pesquisa para prever o custo oculto total a partir dos dados operacionais levantados, utilizando um algoritmo de aprendizado supervisionado Random Forest, conforme detalhado na metodologia.

2.2.2 Coleta de dados e integração entre máquinas e sistemas de produção

A aplicação eficaz da Inteligência Artificial na gestão de custos ocultos depende da disponibilidade de dados operacionais confiáveis, coletados em tempo real. Essa coleta é viabilizada por tecnologias como sensores, CLPs, coletores de dados e sistemas integrados MES (Manufacturing Execution System), conectados ao ERP e ao PCP da empresa, formando a base da Indústria 4.0 (Zhao et al., 2021; Saxena; Jain; Singh, 2022).

No caso desta pesquisa, os dados foram extraídos de uma infraestrutura digital típica da Indústria 4.0, composta por sensores embarcados nas máquinas e sistemas de supervisão. Foram registrados automaticamente o tempo de parada técnica, setup, retrabalho, inspeção, produção e ociosidade. Tais dados alimentaram o modelo preditivo, além de servirem de base para os cálculos convencionais dos custos ocultos.

Conforme apontam Saxena et al. (2022) e Zhao et al. (2021), a integração entre tecnologia operacional (OT) e tecnologia da informação (TI) permite diagnósticos mais precisos e decisões baseadas em evidências, consolidando-se como elemento essencial para a mensuração inteligente de perdas estruturais.

Assim, este capítulo estabelece os fundamentos conceituais e técnicos que embasam a proposta metodológica de identificação e predição de custos ocultos estruturais, discutida nas seções seguintes.

3 METODOLOGIA

3.1 Caracterização da pesquisa

Este estudo configura-se como uma pesquisa aplicada, exploratória e quantitativa, com abordagem empírica. Segundo Gil (2008), a pesquisa aplicada visa gerar conhecimento com aplicação prática, sendo adequada à investigação de problemas concretos como os custos ocultos estruturais em ambientes produtivos.

A pesquisa é classificada como exploratória, conforme Vergara (2011), por investigar fenômenos pouco estruturados, como paradas técnicas, retrabalho, setups, ociosidade e perdas de produtividade. Utilizou-se uma abordagem quantitativa, com base em dados objetivos extraídos de sistemas automatizados de coleta, conforme defendido por Marconi e Lakatos (2017), permitindo análises estatísticas e aplicação de modelos de machine learning.

3.2 Coleta de dados

Os dados foram coletados em uma indústria moveleira localizada em Arapongas (PR), reconhecida como polo do setor. O estudo concentrou-se no setor de furação, monitorando a produção de dois modelos de armário: simples e premium, operados por dois profissionais distintos. O período de coleta compreendeu 100 dias corridos, com registros automáticos de variáveis operacionais.

Utilizou-se um sistema MES (Manufacturing Execution System) conectado a sensores, coletores, CLPs e ao ERP da empresa, compatível com os princípios da Indústria 4.0 (Silva et al., 2020). Os dados extraídos incluíram: tempos de produção, paradas, retrabalho, setups, inspeção, capacidade instalada, e custos-hora de mão de obra e máquina.

3.3 Processamento e cálculo dos custos ocultos

Os dados coletados foram tratados em planilha eletrônica, organizados por lote e modelo de armário. Para o cálculo convencional dos custos ocultos estruturais, aplicaram-se as fórmulas referenciadas no item 2.1.3.

Os custos individuais foram somados por lote e por modelo, obtendo-se o custo oculto total. Esse valor serviu como base para a comparação com a abordagem por IA.

3.4 Aplicação de modelo de machine learning (random forest regressor)

Visando avaliar o potencial da IA na previsão de custos ocultos, foi aplicado um modelo de regressão Random Forest, que permite capturar relações não lineares e combina decisões de múltiplas árvores (Breiman, 2001).

A variável-alvo (Y) foi o custo oculto total convencional, e as variáveis preditoras (X) incluíram: tempo de parada técnica, retrabalho, setup, inspeção, produção, capacidade instalada, custo-hora de mão de obra e máquina. Os dados foram divididos em 70% para treinamento e 30% para teste, com validação cruzada em 10 repetições, utilizando a métrica RMSE para avaliação do modelo:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (yi - y \, \angle)^2}{n}} \tag{7}$$

Onde yi representa o custo oculto real, $y \times$ custo oculto previsto pelo modelo e n o número de observações no conjunto de teste.

3.5 Aplicação do orange data mining para predição de custos ocultos

A implementação prática do modelo foi feita com o software Orange Data Mining, devido à sua interface gráfica intuitiva e integração com planilhas. O fluxo de análise incluiu:

- File: importação da base com os custos e variáveis operacionais;
- Random Forest: aplicação do modelo preditivo com os parâmetros de divisão 70/30;
- Test & Score: avaliação do desempenho (RMSE e R²);
- Predictions: geração das estimativas de custo oculto por lote;
- Save Data: exportação dos dados para Excel, viabilizando a comparação com os cálculos convencionais.

Essa configuração permitiu obter previsões consistentes, garantindo a rastreabilidade das etapas e possibilitando a análise comparativa apresentada no item 4.4.

3.6 Comparação dos resultados

Após a previsão dos custos ocultos por IA, os resultados foram organizados e comparados aos valores obtidos pelo método convencional, permitindo avaliar a acurácia da predição e discutir a viabilidade do uso de modelos inteligentes para suporte à decisão na gestão de custos ocultos em ambientes fabris.

4 ANÁLISE E DISCUSSÃO DOS RESULTADOS

4.1 Apresentação dos dados

Com base nos dados coletados durante o período de monitoramento e nas fórmulas estabelecidas no referencial teórico, foram apurados os custos visíveis e ocultos associados à produção dos dois modelos de armários analisados: simples e premium. Os cálculos foram realizados lote a lote, considerando variáveis como tempo de parada técnica, retrabalho, setup, inspeção, ociosidade, custos da não qualidade, bem como os custos diretos com mão de obra, máquina e matéria-prima.

Os resultados consolidados revelam o impacto financeiro de disfunções

internas que não são capturadas pela contabilidade tradicional, permitindo uma visão

mais realista da rentabilidade por modelo. A seguir, apresentam-se os valores totais

apurados para cada tipo de custo, segregados por categoria e por modelo de produto,

fornecendo a base para comparação com os resultados obtidos por meio do modelo

preditivo.

Essa constatação fundamenta a análise apresentada a seguir, no tópico

"Resultado Operacional com e sem Custos Ocultos", no qual são comparados os

efeitos da inclusão ou exclusão desses custos ocultos no resultado final de cada

produto. Tal comparação é essencial para demonstrar o quanto a não mensuração

desses valores pode comprometer a tomada de decisão gerencial, especialmente no

que diz respeito à precificação, margem de contribuição e planejamento produtivo.

4.2 Resultado operacional com e sem custos ocultos

Os cálculos apresentados nesta subseção foram obtidos a partir de dados reais

coletados por meio do sistema MES, integrados a sensores e CLPs no setor de

furação, assegurando rastreabilidade e precisão. Todas as apurações seguem

rigorosamente as fórmulas apresentadas no referencial teórico, abrangendo custos

visíveis, custos ocultos e custos da não qualidade.

Os resultados consolidados mostram o custo operacional e o resultado bruto

(sem considerar custos ocultos), bem como o resultado líquido (descontando custos

ocultos e da não qualidade). Esses dados, detalhados por modelo de produto (Armário

Simples e Armário Premium), serviram também como base para o treinamento do

modelo preditivo apresentado no item 4.5, garantindo que a aplicação da Inteligência

Artificial estivesse fundamentada em informações verificadas e alinhadas à realidade

operacional da empresa.

4.2.1 Armário simples – cálculo detalhado

Receita total:14.641 unidades × R\$ 110,00 = R\$ 1.610.510,00

Custos Visíveis:

• **Matéria-Prima:** 14.641 × R\$ 40,00 = R\$ 585.640,00

Mão De Obra: 352,13 H × R\$ 25,00 = R\$ 9.211,62

10

- **Máquina:** 352,13 H × R\$ 30,00 = R\$ 11.053,95
- Total Dos Custos Visíveis: R\$ 605.905,58

Custos Ocultos:

- Paradas Técnicas: 2,89 H × R\$ 30,00 = R\$ 86,66
- Retrabalho: 3,79 H × R\$ 25,00 = R\$ 94,63
- **Setup:** 4,84 H × (25 + 30) = R\$ 266,03
- **Ociosidade**: R\$ 0,00
- Inspeção: 26,68 H × R\$ 25,00 = R\$ 667,47
- Custo Da Não Qualidade: R\$ 3.701,30
- Total Custos Ocultos + Não Qualidade: R\$ 4.816,09

Resultados:

- Resultado Bruto: R\$ 1.610.510,00 R\$ 605.905,58 = R\$ 1.004.604,42
- Resultado Líquido: R\$ 1.610.510,00 R\$ 605.905,58 R\$ 4.816,09 =
 R\$ 994.788,33.

4.2.2 Armário Premium – Cálculo Detalhado

• **Receita Total:** 8.382 Unidades × R\$ 180,00 = R\$ 1.508.760,00

Custos Visíveis:

- Matéria-Prima: 8.382 × R\$ 60,00 = R\$ 502.920,00
- **Mão De Obra:** R\$ 8.802,15
- **Máquina:** R\$ 10.562,58
- Total Dos Custos Visíveis: R\$ 522.284,73

Custos Ocultos:

- Paradas Técnicas: 2,42 H × R\$ 30,00 = R\$ 72,63
- Retrabalho: 2,57 H × R\$ 25,00 = R\$ 64,25
- **Setup:** 5,43 H × (25 + 30) = R\$ 298,54
- Ociosidade: R\$0,00
- Inspeção: R\$ 394,22
- Custo Da Não Qualidade: R\$ 5.174,47

Total Custos Ocultos + Não Qualidade: R\$ 6.004,11

Resultados:

- Resultado Bruto: R\$ 1.508.760,00 R\$ 522.282,42 = R\$ 986.477,58
- Resultado Líquido: R\$ 1.508.760,00 R\$ 522.282,42 R\$ 6.004,11=
 R\$ 980.473,47.

Tabela 1

Comparação Custos e Resultados dos Armários

Indicadores	Armário Simples (R\$)	Armário Premium (R\$)
Receita Total (R\$)	1.610.510,00	1.508.760,00
Custo Visível Total (R\$)	605.905,58	522.282,42
Custos Ocultos + NQ (R\$)	4.816,09	6.004,11
Resultado Bruto (R\$)	1.004.604,42	986.477,58
Resultado Líquido (R\$)	994.788,33	980.473,47

Fonte: Autores (2025)

Os resultados apresentados neste estudo referem-se exclusivamente à etapa de furação, representando uma análise parcial da cadeia produtiva dos armários. Os custos visíveis e ocultos apurados correspondem apenas a essa fase, não abrangendo processos posteriores como montagem e expedição. Assim, os valores de resultado bruto e líquido devem ser interpretados como indicadores setoriais, úteis para diagnóstico, mas não como representação integral da lucratividade final.

4.3 Previsão de custos ocultos com inteligência artificial

Após o cálculo determinístico, aplicou-se um modelo preditivo de *machine learning* para estimar o custo oculto total, utilizando o software **Orange Data Mining**. O fluxo de trabalho foi estruturado com os módulos descritos no item 3.6: *file; random forest; test & score; predictions; save data*.

No excel, os dados previstos foram inseridos em coluna própria e processados

com as seguintes fórmulas:

- Erro = custo oculto total previsto
- Erro² = $(erro)^2$
- RMSE = raiz(média(erro²))

O modelo apresentou os seguintes indicadores de desempenho: RMSE = 16,10, MAE = 6,39, MAPE = 4,77% e R² = 0,931. Considerando que o custo oculto médio foi de R\$ 105,34, o RMSE representa cerca de 15% desse valor, indicando boa precisão. O alto coeficiente de determinação (R²) confirma a capacidade do modelo em explicar a variabilidade dos custos ocultos, reforçando o potencial do machine learning como ferramenta complementar aos métodos determinísticos.

4.4 Comparação entre o cálculo convencional e a predição via IA

Para avaliar a consistência do modelo, compararam-se os custos ocultos obtidos pelo cálculo convencional com aqueles previstos pela IA. A Tabela 2 apresenta os resultados:

Tabela 2Comparação Cálculo Método determinístico X Predição Via Inteligência Artificial

Modelo	Custo Oculto Total –	Custo Oculto	Diferença	Diferença
	Convencional (R\$)	Total – IA (R\$)	Absoluta (R\$)	(%)
Armário Simples	4.816,09	4.842,32	26,23	+0,54%
Armário Premium	6.004,11	6.128,61	124,50	2,07%

Fonte: Autores (2025)

4.5 As variações observadas foram inferiores a 3%, confirmando a proximidade entre os métodos. Isso demonstra que o modelo Random Forest é capaz de reproduzir os resultados determinísticos com elevada confiabilidade, além de oferecer vantagem em termos de agilidade e possibilidade de uso preditivo em cenários de tomada de decisão.

4.6 Discussão dos resultados

Os resultados demonstraram que o modelo Random Forest obteve alta precisão (RMSE baixo e R² elevado), validando o uso da IA na predição de custos

ocultos. Essa capacidade preditiva viabiliza uma gestão mais estratégica, permitindo antecipar gargalos, otimizar o uso de recursos e ajustar orçamentos e preços com base em dados reais.

Assim, a integração entre dados operacionais e algoritmos de IA fortalece a transição da gestão descritiva para uma abordagem preditiva e orientada à melhoria contínua.

5 CONSIDERAÇÕES FINAIS

O presente estudo evidenciou que a combinação entre o cálculo convencional e o uso de Inteligência Artificial oferece uma abordagem robusta para a identificação e predição de custos ocultos em ambientes industriais. A aplicação do modelo Random Forest, no software Orange Data Mining, permitiu prever os custos ocultos totais com elevada precisão, apresentando variações inferiores a 0,3% em relação aos valores calculados por fórmulas tradicionais.

Esse resultado valida o uso de modelos preditivos como ferramenta de apoio à tomada de decisão gerencial, especialmente em cenários que demandam agilidade e antecipação de perdas. Além de reduzir o tempo necessário para apuração, a metodologia integrada demonstrou aplicabilidade prática e possibilidade de replicação em outros contextos produtivos.

Conclui-se, portanto, que a utilização da IA, aliada ao monitoramento operacional em tempo real e a técnicas consolidadas de custeio, amplia a capacidade de diagnóstico e resposta das organizações frente aos custos ocultos, contribuindo diretamente para o aumento da eficiência e da competitividade industrial, da tomada de decisão, planejamento produtivo e ações de melhoria contínua.

Todavia, esta pesquisa apresenta limitações: o uso do software Orange Data Mining restringe a customização de parâmetros avançados do modelo e a análise concentrou-se em um único setor produtivo (furação). Estudos futuros devem ampliar o escopo para diferentes setores da indústria moveleira e explorar outras ferramentas de *machine learning*, de modo a reforçar e generalizar os achados aqui apresentados.

REFERÊNCIAS

Breiman, L. Random forests. Machine Learning, v. 45, n. 1, p. 5-32, 2001.

Crosby, P. B. Quality is Free. New York: McGraw-Hill, 1979.

Fachinelli, A. C.; ZANINI, R. R.; RANGEL, L. A. Desempenho e produtividade na indústria moveleira: uma análise das práticas de gestão. Revista de Administração da UFSM, v. 13, n. 2, p. 328-346, 2020.

Femenick, J. Custos invisíveis e custos ocultos: a problemática e a solução. Disponível em: https://www.femenick.com. Acesso em: 01 ago. 2025.

Freitas, H. et al. Fatores determinantes de ocorrência de custos ocultos. Revista de Administração Contemporânea, v. 11, n. 3, p. 137-154, 2007.

Gil, A. C. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.

Hosking, G. The strategic management of costs. Planning Review, v. 21, n. 5, p. 24-27, 1993.

IBGE – Instituto Brasileiro de Geografia e Estatística. Pesquisa Industrial Anual – Empresa (PIA-Empresa). Rio de Janeiro: IBGE, 2023.

Juran, J. M.; GODFREY, A. B. Juran's Quality Handbook. 5. ed. New York: McGraw-Hill, 1999.

Kaplan, R. S.; COOPER, R. Cost and Effect: Using Integrated Cost Systems to Drive Profitability and Performance. Boston: Harvard Business School Press, 1999.

Kumar, A.; SINGH, R. Cost prediction in manufacturing using AI: a machine learning approach. International Journal of Production Research, v. 58, n. 10, p. 3004-3016, 2020.

Marconi, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas. 2017.

Miller, J. G.; VOLLMANN, T. E. The hidden factory. Harvard Business Review, v. 63, n. 5, p. 142-150, 1985.

Savall, H.; ZARDET, V. Domination des coûts et performances socio-économiques. Paris: Economica, 1991.

Saxena, V.; JAIN, R.; SINGH, A. Intelligent allocation of manufacturing resources using Al-driven models. Journal of Manufacturing Systems, v. 62, p. 58-67, 2022.

Shingo, S. A revolution in manufacturing: The SMED system. Cambridge: P P, 1985.

Silva, A. A. et al. Integração de sistemas MES e ERP na indústria moveleira. Revista Produção Online, v. 20, n. 4, p. 1450-1472, 2020.

Vergara, S. C. Projetos e relatórios de pesquisa em administração.14. ed. Atlas, SP 2011.

Zhao, J. et al. Al-based predictive maintenance for smart manufacture. v. 104, 2021.